\begin{tabular}{|c|c|c|c|c|}
\hline Q1 \& \(F(t)=1-e^{-t / 3} \quad(t>0)\) \& \& \& \\
\hline (i) \& \begin{tabular}{l}
For median \(m, \frac{1}{2}=1-\mathrm{e}^{-m / 3}\)
\[
\begin{aligned}
\& \therefore \mathrm{e}^{-m / 3}=\frac{1}{2} \Rightarrow-\frac{m}{3}=\ln \frac{1}{2}=-0.6931 \\
\& \Rightarrow m=2.079
\end{aligned}
\] \\
For \(90^{\text {th }}\) percentile \(p, 0.9=1-\mathrm{e}^{-p / 3}\)
\[
\begin{aligned}
\& \therefore \mathrm{e}^{-p / 3}=0.1 \Rightarrow-\frac{p}{3}=\ln 0.1=-2.3026 \\
\& \Rightarrow p=6.908
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& attempt to solve, here or for 90th percentile. Depends on previous M mark. \& 5 \\
\hline (ii) \& \[
\begin{aligned}
\& \mathrm{f}(t)=\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{~F}(\mathrm{t}) \\
\& =\frac{1}{3} \mathrm{e}^{-t / 3} \\
\& \mu=\int_{0}^{\infty} \frac{1}{3} t \mathrm{e}^{-t / 3} \mathrm{~d} t \\
\& \left.=\frac{1}{3}\left\{\left[\frac{\mathrm{te}}{-t / 3}-1 / 3\right]\right]_{0}^{\infty}+3 \int_{0}^{\infty} \mathrm{e}^{-t / 3} \mathrm{~d} t\right\} \\
\& =[0-0]+\left[\frac{\mathrm{e}^{-t / 3}}{-1 / 3}\right]_{0}^{\infty}=3
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
(for \(t>0\), but condone absence of this) \\
Quoting standard result gets \(0 / 3\) for the mean. \\
attempt to integrate by parts
\end{tabular} \& 5 \\
\hline (iii \& \[
\begin{aligned}
\mathrm{P}(T>\mu)= \& {[\text { from cdf }] \mathrm{e}^{-\mu / 3}=\mathrm{e}^{-1} } \\
\& =0.3679
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
[or via pdf] \\
ft c's mean (>0)
\end{tabular} \& 2 \\
\hline (iv) \& \(\bar{T} \sim(\) approx \() ~ \sim\left(3, \frac{9}{30}=0.3\right)\) \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{ft} \mathrm{c's} \mathrm{mean} \mathrm{(>0)} \\
\& 0.3
\end{aligned}
\] \& 3 \\
\hline (v) \& \begin{tabular}{l}
EITHER can argue that 4.2 is more than 2 \\
SDs from \(\mu\)
\[
(3+2 \sqrt{0.3}=4.095 ;
\] \\
must refer to \(S D(\bar{T})\), not \(\operatorname{SD}(\mathrm{T})\)) \\
i.e. outlier
\[
\Rightarrow \text { doubt }
\] \\
OR formal \\
significance test: \\
\(\frac{4.2-3}{3 / \sqrt{30}}=2.191\), refer to \(N(0,1)\), sig at (eg) \(5 \%\)
\[
\Rightarrow \text { doubt }
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} \& Depends on first M, but could imply it. \& 3

18 \\
\hline
\end{tabular}

Q2	$X \sim \mathrm{~N}(180, \sigma=12)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$\begin{aligned} & \mathrm{P}(X<170)=\mathrm{P}\left(Z<\frac{170-180}{12}=-0.8333\right) \\ & =1-0.7976=0.2024 \end{aligned}$	M A1 A1	For standardising. Award once, here or elsewhere.	3
(ii)	$\begin{aligned} & X_{1}+X_{2}+X_{3}+X_{4}+X_{5} \sim \mathrm{~N}\left(900, \sigma^{2}=720[\sigma=26.8328]\right. \\ & \mathrm{P}(\text { this }<840)=\mathrm{P}\left(\mathrm{Z}<\frac{840-900}{26.8328}=-2.236\right) \\ & =1-0.9873=0.0127 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd. c.a.o.	3
$\begin{aligned} & \text { (iii } \\ & \hline \text { (} \end{aligned}$	$\begin{aligned} & Y \sim \mathrm{~N}(50, \sigma=6) \\ & X+Y \sim \mathrm{~N}\left(230, \sigma^{2}=180[\sigma=13.4164]\right) \\ & \mathrm{P}(\text { this }>240)=\mathrm{P}\left(Z>\frac{240-230}{13.4164}=0.7454\right) \\ & =1-0.7720=0.2280 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd. c.a.o.	3
(iv)	$\frac{1}{4} X \sim N\left(45, \sigma^{2}=\frac{1}{16} \times 144=9[\sigma=3]\right)$ Require t such that $\begin{aligned} 0.9 & =\mathrm{P}(\text { this }<t)=\mathrm{P}\left(Z<\frac{t-45}{3}\right)=\mathrm{P}(Z<1.282) \\ \therefore t-45 & =3 \times 1.282 \Rightarrow t=48.85(48.846) \end{aligned}$	B1 M B1 A1	Variance. Accept sd. FT incorrect mean. Formulation of requirement. 1.282 ft only for incorrect mean	4
(v)	$\begin{aligned} & I=45+T \text { where } T \sim \mathrm{~N}(120, \sigma=10) \\ & \therefore I \sim \mathrm{~N}(165, \sigma=10) \\ & \mathrm{P}(I<150)=\mathrm{P}\left(Z<\frac{150-165}{10}=-1.5\right) \\ & =1-0.9332=0.0668 \end{aligned}$	B1 A1	for unchanged σ (candidates might work with $\mathrm{P}(T<105))$ c.a.o.	2
(vi)	$J=30+\frac{3}{5} T \text { where } T \sim \mathrm{~N}(120, \sigma=10)$		Cands might work with $\mathrm{P}\left(\frac{3}{5} T<75\right) .$ ${ }_{5}^{3} T \sim N(72,36)$	

| $\therefore J \sim \mathrm{~N}\left(102, \sigma^{2}=\frac{9}{25} \times 100=36[\sigma=6]\right)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{P}(J<105)=\mathrm{P}\left(Z<\frac{105-102}{6}=0.5\right)=0.6915$ |\quad| B1 | Mean. |
| :--- | :--- |
| B1 | Variance. Accept sd. |
| A1 | c.a.o. |

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
For machine A,\(\quad \bar{x}=250.19 \quad s_{n-1}=3.8527\) \\
CI is given by \(\quad 250.19 \pm 2.262 \frac{3.8527}{\sqrt{10}}\)
\[
\begin{aligned}
\& \quad=250.19 \pm 2.75(6)=(247.43(4) \\
\& 252.94(6))
\end{aligned}
\] \\
250 is in the CI, so would accept \(\mathrm{H}_{0}: \mu=\) 250 , so no evidence that machine is not working correctly in this respect.
\end{tabular} \& B1
M
B1
M
A1

E1 \& | $s_{n}=3.6549$ (83) but do NOT |
| :--- |
| allow this here or in construction of CI. |
| ft c's $\bar{x} \pm$. |
| 2.262 |
| ft c's $S_{n ̃ 1}$. |
| c.a.o. Must be expressed as an interval. |
| ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{9} is OK . | \\

\hline \& \& \\
\hline
\end{tabular}

(B)	Data 301.3 301.4 299.6 302.2 300.3 303.2 302.6 301.8 300.9 300.8$T=1+2$ 39) Refer to (/paired) Lower (or needed Value for Result is No evid	Median 301 \qquad \qquad \square \qquad \square \qquad $5+8=1$ les of W atistic upper if 3 $=10$ is t signific e against	Difference 0.3 0.4 -1.4 1.2 -0.7 2.2 1.6 0.8 -0.1 -0.2 (or 3+4+6+ coxon single used) 5\% ta (or 45 if 39 nt median being	Rank of \mid diff 3 4 8 7 5 10 9 6 1 2 $+9+10=$ sample lis used) 301	M M A1 B1 M M A1 E1 E1	for differences. ZERO in this section if differences not used. for ranks. FT if ranks wrong.	9
							18

